如何更好有效措施保证机房安全,应对极端高温、高湿、雷暴等天气给机房带来的不良影响呢?
建立机房应急机制
首先是建立监控预警机制技术部门分析历年气象数据并结合气象部门发布的近期天气预报信息,及时发出预防性调整通报;例如:在极端天气出现时如何调整设备设定状态、备用发电系统测试检查、后备燃料调配、防雷设施及接地系统检查等。l设施监控人员密切关注环境监控数据(机房内外温湿度、空调系统、配电系统、消防系统运行状态),如发现监控数据有异常,监控人员将按照相应程序进行汇报、提取数据、分析原因等,将可能发生的问题消灭在萌芽阶段。
其次是人员应急调度机制建立应急事件领导小组,在极端天气发生时,做到“预警”、“分析”、“处理”三步,领导小组分析天气状况可能会对机房运行造成风险,对相关运行部门提出运行建议;极端天气状况发生后,分析监控数据、借助人员巡检信息,及时调整或变更运行方案;相关专业技术人员随时待命,留守设备现场,以备设备故障后的排险、修善工作。
最后是建立应急机制制定IDC安全运行应急机制,例如《火灾应预案》、《电力系统故障应急预案》、《制冷系统故障应急预案》等;以电力故障-市电中断为例:预案中制定了详细的发电机启动切换流程、后备燃料供给措施、人员调配措施、故障通报流程等。
高密度机房供电系统
高密度计算数据中心中的机架经常是满载的、功率很大,过去一个机架功耗为2-3kW,现在却往往高达20-40kW.早期的机架配电方式已经无法满足高密度设备机架不断增长的电力需求。因此,必须采用创新的机架配电技术来满足为高密度机架供应充足的电力并确保持续稳定运行的要求,包括:
1.支持通过冗余电源实现设备的冗余操作:冗余电源系统需要两个配电电路,分别用于两个电源总线。如果一个总线出现故障,另一路总线仍可处理整个系统的负载。
2.支持高电压和三相电源:传统数据中心利用单相电流工作,其功耗已经不能满足现代高密度计算的需要。因此要求改用三相电源,使用称为高电压交流电源的208伏、三相系统。三相电源通常比单相电源更加高效。此外,与单相电源相比,三相电源更为稳定,更多时间都可处于峰值电压,降低供电损失和发热,不仅能够为满载刀片服务器的机架提供足够功率,而且能够更加稳定持续供电,确保系统的安全稳定运行,从而为支持高密度数据中心供电提供一种通用且经济的电源。
3.使用分段配电技术,能够降低由于过载或维护所引发的意外宕机机率,并减小管理员连续打开多个服务器组而产生的浪涌电流,提高供电的安全性。
4.采用节电配电机柜:通过将数据中心的集中配电改为区域配电方式,将配电管理移到“区域”级,解决了从机箱到机架的集成电源管理问题,并提高供电效率。
5.提供电路监控功能:通过部署可持续监控电流负载的组件,数据中心可以使用少量人力实现高效运行管理。各系统可轻松实现配电电路负载均衡,防止因过载或设备损坏而引发的意外宕机。为了简化管理,用户可以选用模块化PDU管理模块,利用它们来监控数据中心的电源环境。当前市场上已有很多新型配电装置(PDU)可供选择,其中惠普公司新型的模块化PDU在每个机架上集成了插座、电缆与断路器,提供一系列领先的特性支持高密度机架稳定安全稳定运行和节电。
高密度机房制冷转变
优秀的数据中心制冷方案具有4个基本原则,特别是高密度负载数据中心:向设备通风口送入温度适宜的足量空气;最小化冷/热空气混合;控制到空调的回流气体路径;最大化到空调的回流气体温度。如果正确实施,遏制可以帮助实现这4个原则。